Soil organic matter (OM) is well documented for its capacity to retain persistent organic pollutants (POPs) and thus is important in dictating the environmental partitioning of POPs between media such as air, water, and soil. Black carbon (BC) is a small component of OM and exhibits a 10~100 times greater sorption capacity of POPs than humified OM. Furthermore, due to the inherent long environmental life time of BC, a result of its resistance to physical and biological degradation, POPs can continue to accumulate in BC over a long period of time. The unique properties of BC have been of particular interest over the last 30 years and have resulted in broad research being conducted into its effects of POP cycling in atmospheric, oceanographic and soil matrices. The results of such studies have proved valuable in providing new research initiatives into the role of BC in the cycling of hydrophobic organic compounds (HOCs) as well as giving further insight into the long range atmospheric transport (LRAT) potential and subsequent risk assessment criteria for persistent organic pollutants (POPs). In this report, we introduce a novel study examining the relationships between BC and OM with respect to their POP sorption capacity and discuss the role of BC in influencing the environmental regulation of organic pollutants.